14 Computer Bulletin June 1980

Not only computing—also art

JOHN LANSDOWN

Since Christmas I seem to have done
little else but digitise images of
various sorts for subsequent
processing—mainly frame-by-frame
animation. As a result of this
unenviable experience I conclude that
we must go a long way yet before the
task of getting complex visual
information into computers is the
simple, trouble free matter it ought to
be. Correctly inputting
two-dimensional (and two-and-a-half
dimensional) objects is difficult
enough particularly if, like lettering,
they contain a lot of arbitrary
curves—the eye can tolerate quite
large errors in the shapes of letters
consisting of straight lines such as A
and H, but minute point
misplacements in letters like O and S
stand out like beacons. However,
three-dimensional objects are the real
headaches.

The problem with three-dimensional
objects, such as Figure 1, is that in
order to take advantage of the
semi-automatic facilities of digitisers
and tablets, we must have a priori
fairly complex mathematical models
of objects in the machine. The only
model we need in the
two-dimensional case is that some
points begin a continuous line and
others are part of one but, for three
dimensions, much more information
is needed. If we know that the object
consists of rectangular prisms then,
again, a simple model is all that’s
required but objects like the Sepecat
Jaguar of Figure 1 are not amenable
to simple treatment.

Ian Braid, in his book Designing
with Volumes and his paper ‘The
Synthesis of Solids Bounded by Many
Faces’ (Communications of ACM,
April 1975 pp 209, 216), shows how
objects built up of cubes and cylinders
can be fairly described by, as it were,
adding and subtracting volumes in a
special way. I would like to see this
work further developed and more
algorithms published so that we can
all experiment with the ideas of

Figure 1 (top)
Figure 2 (centre)
Figure 3 (right)
Figure 4 (below)

B ol IS

synthesising objects from primitives
rather than trying to describe them
more explicitly.

Skip and divide

Some years ago Alan Sutcliffe was
looking for a graphics algorithm
which, though simple nevertheless
produced an interesting effect. I have
mentioned on another occasion the

.rll’Q
\ .
\\.
_\ 6 N\
N k \ - %\
3 3 || \\ \\
A\ N

resulting Skip and Divide algorithm
which, applied to a set of intervals
along a line, goes like this:

Move along the line alternatively
skipping an interval and dividing the
next into two equal intervals. Treat the
end of the line as joined to the
beginning so that the process can
continue as long as needed.

There are many ways to display the
results. Figure 2 shows the first seven
cycles, beginning with a single
interval. As the process continues,
something like a spectrum analysis
ensues. Each division of an interval
produces two equal intervals and it is
clear that, at the next cycle, one of
these will be further divided and one
skipped. At a Computer Arts Society
course at the Electronic Music Studio
at Stockholm some years ago, Alan
mentioned the algorithm to Lambert
Meertens, himself a prolific computer
artist and mathematician who works
at the Mathematical Centre in
Amsterdam. The next day Lambert
came back with a proof that, whilst a
particular interval may remain
undivided for several cycles, no
interval will remain undivided
indefinitely.

More recently, Alan came up with a
simple way of applying the algorithm
to an area rather than a line and the
resulting sequence of events is shown
in Figure 3 starting with a double
square. The rule is that a square is
divided vertically into two double
squares, and a double square is
divided horizontally to make two
squares. Left is taken before right
and lower before upper. Figure 4
shows the result when, at the end of
each cycle, areas are alternatively
shaded and left blank. The result
from several cycles are concatenated
to form a continuous pattern.

45

0 [~Jool

2 14 3 |6

AV N ()

i 12 |t |3

